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Abstract

Whole-exome sequencing of two brothers with drug-resistant, early-onset, focal

epilepsy secondary to extensive type IIA focal cortical dysplasia identified a

paternally inherited, nonsense variant of DEPDC5 (c.C1663T, p.Arg555*). This
variant has previously been reported to cause familial focal epilepsy with vari-

able foci in patients with normal brain imaging. Immunostaining of resected

brain tissue from both brothers demonstrated mammalian target of rapamycin

(mTOR) activation. This report shows the histopathological features of cortical

dysplasia associated with a DEPDC5 mutation, confirms mTOR dysregulation

in the malformed tissue and expands the spectrum of neurological manifesta-

tions of DEPDC5 mutations to include severe phenotypes with large areas of

cortical malformation.
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Introduction

Focal cortical dysplasia (FCD) encompasses a spectrum of

lesions from highly localized bottom of the sulcus dyspla-

sias (BOSD) to extensive multifocal, quadrantic or hemi-

spheric malformations. Although the magnetic resonance

imaging (MRI) appearance can lead to the suspicion of

FCD, definitive diagnosis and classification requires histo-

logical analysis. FCD is characterized by cortical dyslamin-

ation either in isolation (FCD type I) or with dysmorphic

neurons (FCD type IIA) or dysmorphic neurons and bal-

loon cells (FCD type IIB).1 Most cases of FCD are spo-

radic; however, rare familial cases are described.2,3

Deleterious mutations affecting the gene encoding

Dishevelled, Egl-10 and Pleckstrin (DEP) domain-con-

taining protein 5 gene (DEPDC5) cause familial focal epi-

lepsies without obvious cortical malformations with

variable penetrance and expressivity.4–6 DEPDC5 is a

component of the GATOR1 complex, a critical negative

regulator of the mammalian target of rapamycin (mTOR)

pathway.7 Germline heterozygous mutations in DEPDC5

have been associated with lesional epilepsies including

BOSD type FCD.3 Notably, there was considerable intra-

familial variability in the presence or absence of cortical

abnormalities, with only one pedigree showing more than

one individual with FCD. Surgery was not required for

seizure control, therefore the pathological correlates of

these lesions remain unknown. Recently, two studies

showed mutations in DEPDC5 associated with a range of

FCD subtypes and hemimegalencephaly,8,9 yet no

evidence of DEPDC5-mediated mTOR dysregulation has

yet been shown in human brain.

We previously described six families with FCD and

related lesions; one family including two brothers with

neonatal seizures and extensive type IIA FCD.2 To deter-

mine a genetic etiology for FCD in this family, we per-

formed whole-exome sequencing (WES) of both siblings

and identified a heterozygous nonsense mutation in DEP-

DC5.

Patients and Methods

The Royal Children’s Hospital Human Research Ethics

Committee approved the study and informed consent was

obtained from affected individuals or their parents. Clini-

cal details were obtained from parent interview and medi-

cal records. Brain MRI was obtained using age-specific

epilepsy protocols on 1.5 T and 3 T scanners. Resected

tissue was classified by a neuropathologist according to

the system of the ILAE Diagnostic Methods Commission.1

Resected brain tissue was assessed for mTOR activity by

phospho-S6 ribosomal protein antibody staining as

described previously.10 Genomic DNA was isolated from

peripheral blood using standard methods. SNP genotype

data were generated with the Illumina HumanCytoSNP-

12v2 SNP chip and linkage (identity-by-descent [IBD]

sharing) analysis was performed with MERLIN11 (v1.1.2).

Exonic targets were enriched with the TruSeq whole-ex-

ome kit and WES was performed with 100-base pair

paired-end reads on a HiSeq2000 (Illumina, San Diego,

CA). An in-house pipeline was used for data analysis.

Raw sequence data were aligned to the human reference

genome (hg19) with Novoalign (v2.08.01 www.novo-

craft.com). Local re-alignment was performed with Gen-

ome Analysis Toolkit (GATK; v.5-2)12 and variant

detection and annotation utilized GATK’s Unified Geno-

typer (v3.0-0) and ANNOVAR (version dated 2013-05-

20).13 Variants were filtered in step-wise fashion against

criteria including minor allele frequency (MAF) <1%
within the 1000 Genomes Project (release of November

2010) and Exome Variant Server (ESP6500 release; http://

evs.gs.washington.edu/EVS/) data. Variants were then fil-

tered with the following inclusion criteria; (1) within a

linkage region (IBD = 1 or 2), (2) coding/nonsynony-

mous or an insertion or deletion, or in close proximity to

a splice site, (3) a prediction of at least possibly damaging

by either SIFT14 (v5.1.1) or Polyphen-215 (v2.2.2r398)

and (4) presence within a list of 483 candidate genes

potentially associated with brain malformations (Table

S1). Variants of interest were validated in the siblings and

genotyped in extended family members by Sanger

sequencing. The DEPDC5 reference sequences

NM_001242896.1 and NP_001229825.1 were utilized.

Results

Detailed clinical summaries for the two affected siblings

are published as Family 1.2 The extended pedigree is

shown in Figure 1. Both brothers (III:6 and III:7) had

intractable neonatal-onset focal epilepsy, successfully trea-

ted by surgery in infancy; a right hemispherectomy in

III:6 and a right temporo-parietal-occipital resection in

III:7. There was no relevant family history on the mater-

nal side, and mother had a normal brain MRI. The father

(II:3) had four nocturnal tonic clonic seizures and one

daytime seizure beginning at 24 years managed success-

fully with carbamazepine. Right leg jerking was witnessed

at onset on one occasion and post-ictal EEG showed focal

slowing over the left hemisphere. 3 T brain MRI at age

49 years was normal. The paternal uncle (II:2) had noc-

turnal tonic clonic seizures followed by left-sided weak-

ness beginning at 38 years treated successfully with

carbamazepine. 3 T brain MRI at age 53 years showed

mild ventriculomegaly. Results of EEG were not available.

A paternal first cousin (III:2) had a history of febrile sei-

zures. A grand paternal uncle (I:3) had epilepsy with
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onset at age 12 years. A paternal second cousin once

removed (II:5) died during a seizure at 18 years. Further

clinical and imaging details and DNA samples were not

available on these three individuals.

Brain MRI, histopathology and phospho S-6 immuno-

staining are shown in Figure 2A–F. Both brothers had

extensive imaging abnormalities of their right hemisphere

suggestive of FCD. Histopathology showed cortical dysl-

amination and dysmorphic neurons but no balloon cells

consistent with FCDIIA. Phospho S6 labeling was positive

in both.

Analysis of the SNP-chip genotypes for the two siblings

confirmed sibling relatedness and excluded consanguinity.

Linkage analysis identified 69.4% of the siblings’ genomes

was shared (IBD = 1 or 2), in broad agreement with the

expectation for two siblings (25% IBD = 0, 75%

IBD = 1/2). Bioinformatic analysis of WES data identified

a total (union) of 441,161 variants, of which three

(Table 1) fulfilled the inclusion criteria. The nonsense

variant in DEPDC5 (c.C1663T, p.Arg555*) and the mis-

sense variant in the gene encoding DEP domain-contain-

ing mTOR-interacting protein (DEPTOR, c.T338A,

p.Leu113His) were novel while the missense variant in

the gene encoding Neurofibromin 1 (NF1, c.C2159T,

p.Ala720Val, rs148154172) had a reported MAF of 0.5%.

Sanger sequencing confirmed the siblings carried the

DEPDC5, DEPTOR and NF1 variants in the heterozygous

state. Sequencing showed the father, uncle and paternal

grandmother carried the DEPDC5 nonsense variant

(Fig. 1). The father was heterozygous for the DEPTOR

variant, while the mother was heterozygous for the NF1

variant. This DEPDC5 nonsense variant was previously

found in a Dutch family (D1) with familial focal epilepsy

and is not reported in the 1000 genome, ESP6500 or

ExAC databases.4 Family 1 also has Dutch ancestry and

haplotype analysis demonstrated that the DEPDC5 non-

sense mutation arose on a rare haplotype carried by both

our Family 1 and family D1, suggesting shared ancestry.

Discussion

Disruption of the mTOR signaling pathway is increasingly

recognized in the etiology of malformations of cortical

development, with both germline and somatic mutations

in mTOR pathway genes contributing to a range of phe-

notypes.3,16–18 Mutations in DEPDC5, a negative regulator

of mTOR activity, cause focal epilepsy with or without a

cortical malformation visible on MRI.3,4,8,9 Here, we show

a DEPDC5 mutation in two brothers with extensive FCD

type IIA, and a paternal family history of nonlesional

epilepsy.

WES identified three predicted damaging variants

affecting DEPDC5, NF1, and DEPTOR, which encode

components of the mTOR pathway. DEPDC5 encodes a

subunit of the GATOR1 complex which suppresses

mTORC1 activity in response to amino acid deprivation.7

A key step in the activation of mTORC1 is its recruitment

to the lysosomal surface. shRNA-mediated downregula-

tion of DEPDC5 in vitro was associated with constitutive

localization of mTOR to the lysosomal surface and dys-

regulated activity.7 Consistent with these in vitro studies,

we demonstrate for the first time mTOR dysregulation in

brain tissue of individuals with DEPDC5 mutations.

These siblings represent the severe end of the spectrum

of clinical and imaging phenotypes thus far reported in

DEPDC5 mutations. Both brothers had drug-resistant,

early-onset focal epilepsy and imaging showed extensive

FCD, being multifocal hemispheric in one and posterior

quadrantic in the other. The Dutch family reported to

have focal epilepsy and an identical mutation in DEPDC5

all had normal brain MRI.4 It is possible that additional

variants in other genes encoding components of the

mTOR pathway could contribute to the phenotypic vari-

ability associated with DEPDC5, which encompasses both

lesional and nonlesional epilepsies. We demonstrated that

both siblings also carry heterozygous missense alleles

affecting DEPTOR and NF1, the former paternally inher-

ited and the latter maternally inherited. DEPTOR appears

to play a key role in mTOR signaling and directly inhibits

mTOR activity by binding to the FAT domain.19

Similarly, while mutations in NF1 predispose individuals

to neurofibromatosis type I, NF-1 can potentially dysre-

gulate DEPTOR activity via a cascade of interactions that

Figure 1. Pedigree structure and genotyping. Pedigree showing the

epilepsy phenotypes and the genotypes for the variants identified in

DEPDC5, DEPTOR, and NF1.
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includes the suppression of v-maf avian musculoaponeu-

rotic fibrosarcoma oncogene homolog (MAF).20 Neither

brother nor their mother had clinical or imaging features

of neurofibromatosis making the NF1 variant of question-

able significance.

These data expand the understanding of DEPDC5-asso-

ciated epilepsies by showing pathologically proven cortical

dysplasia with associated mTOR activation. It remains

unclear whether the germline mutation in DEPDC5 is suf-

ficient in isolation to cause cortical dysplasia or whether

additional germline or somatic variants of mTOR path-

way genes may also contribute to the severe cortical

dysplasia seen in these siblings. Additional studies of

mTOR pathway genes in germline DNA and DNA from

resected brain tissue from sporadic FCD cases will be

required to explore this hypothesis.
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often maximal at the bases of deep abnormal sulci throughout the right hemisphere in patient III:6 and restricted to the right posterior quadrant

in patient III:7 (white arrows). (B and E) are low- and high-power hematoxylin- and eosin-stained images, respectively, of resected cortex showing

cortical dyslamination with clusters of dysmorphic cytomegalic neurons (black arrow) consistent with FCDIIA. (C and F) are images showing

positive phospho S6 immunostaining (Ser235/236, Cell Signaling #2211, rabbit polyclonal, 1:200) in dysmorphic cytomegalic neurons (black

arrows), consistent with mTOR pathway activation. In comparison, (G) shows virtually absent phospho S6 immunostaining in control post mortem

human cortex (scale bar B, 400 lm; F, 80 lm; C, E, and G, 200 lm).

Table 1. Description of candidate variants identified in Family 1.

Chr Position Ref allele Alt allele Gene Transcript Exon Coding change Protein change

Damaging?1

PPH-2/SIFT

8 121,013,800 T A DEPTOR uc011lid.2 3 c.T338A p.L113H prob/prob

17 29,679,412 C T NF1 uc010cso.3 16 c.C2159T p.A720V prob/tol

22 32,211,195 C T DEPDC5 uc011alu.2 21 c.C1663T p.R555X �/prob

List of variants that satisfy the primary inclusion criteria of minor allele frequency <0.01, predicted damaging effects to protein function and

presence in the candidate gene list (Table S1). The full criteria are detailed in the methods.
1Predicted pathogenicity by Polyphen-2 (PPH-2) and SIFT with the results “probably damaging” (prob), “tolerated” (tol) and “unscored” (�).
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Supporting Information

Additional Supporting Information may be found in the

online version of this article:

Table S1. List of genes causative or potentially associated

with brain malformations derived from extensive litera-

ture searches, including key search terms such as “brain

malformation,” “cortical dysplasia”, and “cortical malfor-

mations.” It includes all currently known genes associated

with brain malformations with potential interacting

partners and associated pathway genes identified by

STRING analysis.
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